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The propagation of weak shock waves ( M ,  = 1.007, 1.03 and 1 . 1 )  through a 
statistically uniform random medium has been investigated experimentally in a 
shock tube. The wave-front geometry, rise time and amplitude of initially plane 
shocks which have propagated through a random mixture of helium and refrigerant 
12 are measured. The effect of shock propagation on the properties of the random 
medium is visualized with schlieren and shadow photography. The pressure histories 
of the distorted shock waves reflecting from a normal end wall are observed to be 
both peaked and rounded. In  the rounded case the perturbed shock is found to be 
made up of a succession of weak, slightly curved fronts with a total effective rise time 
orders of magnitude greater than the classical Taylor thickness. The radius of 
curvature of the weakest shocks after propagating through the random medium is 
inferred from observations at two downstream stations to be about 7 times the 
integral scale of the gas inhomogeneities. It is concluded that the observed 
distortions of the wave fronts can best be explained in terms of random focusing and 
defocusing of the front by the inhomogeneities in the medium. A ray-tracing 
calculation has been used to interpret the experimental observations. It is found that 
geometrical considerations are sufficient to account for many of the effects observed 
on the shocks. 

1. Introduction 
The propagation of a shock wave through a random medium is an example of a 

nonlinear interaction process in which a pressure field is coupled to vorticity and/or 
entropy fluctuations. The shock wave has an effect on the fluctuations in the fluid 
and, conversely, fluid non-uniformities affect the shock propagation. Both effects are 
particularly important in flows in which the shocks are of moderate strength (not so 
strong that the stability of shock waves predominates) and the non-uniformities are 
large. In this situation the basic nonlinearity of fluid mechanics is important both in 
the wave propagation and in the motion of the turbulent fluid. On the other hand, 
the interaction of acoustic waves with non-uniform media can be treated by (linear) 
scattering theory and the wave propagation has no effect on the non-uniformities. 
For moderate-strength shocks departures from the predictions of acoustic theory are 
due to the effects of nonlinear wave steepening, and the wave can substantially 
enhance turbulent mixing. 

There is an increasing number of applications in which incomplete understanding 
t Present address : Departments of Aeronautics and Astronautics, and of Electrical Engineering, 

Stanford University, Stanford, CA 94306-4035, USA 
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of the coupling between finite-amplitude waves and fluid-dynamic non-uniformity is 
a limiting factor, including high-energy flowing-gas lasers, laser fusion, combustiori 
instability, shock/boundary-layer interaction, thc propagation of the sonic boom 
through the Earth’s atmosphere, supersonic jet noise, and even supernovae 
explosions. In  this paper we describe an experimental investigation of the 
propagation of weak shocks through a statistically uniform laboratory-generated 
random medium. The experiments are designed to investigate some of the general 
features of the interaction phenomena. 

Aspects of the physical processes involved in the interaction between shock waves 
and turbulence have been studied previously both theoretically and experimentally. 
Chu & Kovasznay (1957) established a convenient basis for cataloguing wave 
interactions and showed how, to second order; nonlinear interactions in a &ous 
compressible fluid act like ‘source’ terms in the mass, momentum and energy 
equations. Chu & Kovasznay split the flow field into three contributions or ‘modes’: 
the vorticity mode, the sound or wave mode and the entropy mode ; and they studied 
the effects of the interaction of these modes. They showed that the vorticity mode 
can be altered by vortex stretching, by non1inr:ar interactions between waves (e.g. 
Mach reflection), and by wave-entropy interactions through the Rjerkiies term in the 
vorticity equation. The wave mode can be modified by nonlinear wave interactions 
(parametric amplification), by scattering from vorticity and entropy fluctuations 
and by the generation of aerodynamic noise by Reynolds stresses in the vortical 
velocity field. Finally, modifications of the entropy field are caused by convection 
induced by the waves and by vorticity through the process of turbulent heat transfer 
and mixing. 

Wave-mode interactions have been studied by Lighthill (1953) and Ribner (1954). 
In  these works the emphasis was on the calculation of the scattered wave field. Crow 
(1969) reinterpreted the Lighthill theory and applied i t  to the sonic-boom problem. 
Single-scattering theory explains many of the observed features in sonic-boom 
pressure profiles (Maglieri & Parrot] 1963), but predicts impossibly large perturbations 
on the shock front. Furthermore, in some cases documented by Maglieri & Parrot, 
the rise time of the initial disturbance on the sonic boom N-wave is observed to be 
up to three orders of magnitude greater than the Taylor shock thickness.? Crow has 
pointed out that second-order theory contains a mechanism for thickening shocks, 
and Plotkin & George (1972) developed a second-order perturbation scheme which 
led to a Burgers equation for the wave structure, with the molecular viscosity 
replaced by a viscosity-like term depending on the properties of the Earth’s 
turbulent boundary layer. They calculated the equilibrium wave-front structure 
(governed by the balance between nonlinear steepening and turbulent scattering of 
acoustic energy) of the mean coherent wave front, and showed that the profile of an 
initially discontinuous wave becomes smooth and rather thick. Ffowcs Williams & 
Howe (1973) disputed this result and correctly pointed out that an initially 
discontinuous wave must, in accordance with geometrical acoustics, remain 
discontinuous. They reinterpreted and reconfirmed this fact using a multiple- 
scattering theory which in the limit is equivalent to linearized geometrical acoustics. 
Using order-of-magnitude estimates they further argued that focusing, a mechanism 

t Hodgson (1973) has suggested that vibrational relaxation effects in oxygen and nitrogen might 
substantially increase shock thickness. The relaxation frequencies of these gases are strongly 
dependent upon the water vapour content’ of air, and it is unlikely that this mechanism can explain 
the observed thickening in the sonic:-boom pressure profiles. 
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first proposed by Pierce (1968) to explain the main features of sonic-boom profiles, 
is unlikely to  be important in atmospheric scattering. This paper itself, however, was 
incorrect, as pointed out by Howe (1973). To explain the observations of the present 
work we find it necessary to invoke the focusing mechanism. 

Concerning the point that linear theory predicts excessive wave-front amplitudes, 
it should be noted that, even though fluctuations of index of refraction may be small, 
perturbation theory is not uniformly valid for large path lengths (Keller 1962). Thus, 
conclusions from linear theory about multiple scattering may be in error, again 
raising the possibility that nonlinear phenomena such as focusing and caustics are 
important in the interaction process. Kravtsov (1969) has explicitly considered the 
possibility that caustics may form in a random medium, but he too uses linearized 
geometrical acoustics theory. In  a paper that specifically addresses the processes 
thought to be dominant in the present experiments, Kulkarny & White (1982) 
showed that, because of the inherent nonlinearity of geometrical acoustics, focusing 
inevitably occurs along any given ray within a finite distance from the source. They 
have shown how the mean distance to first focus and the mean density of foci depend 
on the magnitude and scale of the inhomogeneities in the medium. More recently, 
White (1987) has expanded this analysis and shown how accurate statistical 
descriptions of the wave field up to fourth-order moments may be computed using 
geometrical acoustics, even in the vicinity of caustics. 

The effect of wave propagation on fluid motion has also been treated in the 
literature, including studies of the interaction between shock waves and single 
scatterers and arrays of discrete inhomogeneities. The influence of the wave mode on 
the vorticity and entropy modes was studied by Markstein (1957 a ,  b )  and Rudinger 
(1958). They found that as a consequence of the interaction between a shock wave 
and a laminar flame front the Rayleigh-Taylor instability (Taylor 1950)t causes the 
flame front surface area to increase and ultimately results in disintegration of the 
front. A physical model of the interaction of a shock with a spherical inhomogeneity, 
in which it was argued that a vortex ring is produced, was put forward by Rudinger 
& Sommers (1960). Recently the same problem has been treated experimentally 
(Haas & Sturtevant 1987) and by large-scale numerical computation (Picone et al. 
1984; Winkler et al. 1987). Wave propagation through an array of vortices was 
studied by Werner (1961), who computed the transient pressure field but did not 
treat modifications of the vorticity mode. Dettleff et al. (1979) reported the 
observation of vortex rings in the fluid behind liquefaction shock waves, presumably 
caused by some undefined non-uniformity of the preshock fluid. Finally, Anyiwo & 
Bushnell (1982) have studied the amplification of turbulence in shock-wave 
boundary-layer interaction, an important application of the general problem 
considered here. 

I n  the present investigation we have studied the propagation of relatively weak 
shock waves through a randomly inhomogeneous mixture of helium (molecular 
weight 4) and refrigerant 12 (molecular weight 121). Both the modifications to the 
pressure field and the density field are studied. For the amplitude of fluid 
inhomogeneities that can be generated in the present apparatus, namely 6 % 
fluctuation in the sound speed, only shocks of strength Mach number M ,  < 1.1 are 
substantially affected by passage through the test region. Stronger shocks are so 

t Also known as the Richtmeyer-Meshkov instability; cf. Richtmyer (1960), Meshkov (1970), 
Meyer & Blewett (1972). 



516 L. Hesselink and B. Sturtevant 

stable that scattering is minimal. Thus, acoustic theory, particularly the theories of 
geometrical acoustics and geometrical diffraction of sound pulses, forms the basis for 
discussing the experimental configuration and the results of this work. As is usually 
the case in optics as well as in acoustics, when a sharp discontinuity propagates 
through a random medium characterized by a spectrum of lengthscales associated 
with eddies, diffraction effects may be important. The Fraunhofer parameter F = 

( A / d )  x ,  where A represents the thickness of the wave, d is a characteristic lengthscale 
in the medium and z the propagation distance, is an indicator of the importance of 
diffraction effects. When F 2 d,  diffraction effects may be important. I n  our case 
A x 0.1 mm, d x 1 cm, z x 30 cm, so F x 3 mm < d,  which indicates that for these 
values diffraction is not important. It should be noted, however, that  the choice of 
values for these parameters is not unique, and for other values, e.g., scales d smaller 
than 3 mm, diffraction needs to be taken into account in order to exactly describe the 
wave propagation. Furthermore, the geometrical ray-tracing calculations discussed 
in 94 show that wave front focusing occurs within the medium, and near a focus 
diffraction effects cannot be ignored. However, geometrical arguments yield a 
qualitative picture of wave-front configurations ; as will become apparent below, 
they are sufficient to describe the salient features of the present observations. This 
position is supported by recent work of White (1987), who showed that even near a 
caustic computations of up to the fourth moment may be carried out using 
geometrical acoustics instead of diffraction analysis. I n  the present study we have 
chosen a geometrical acoustics ray-tracing calculation for interpretation of the 
experimental results. A major result of this study is that  most of the observed 
scattering effects can be interpreted by geometrical considerations, in which the 
initially discontinuous shocks remain discontinuous but the fronts distort in three 
dimensions. 

2. Experimental 
2.1. Description of the facility 

An apparatus in which is generated a standardized model of a random medium was 
constructed to serve as the test section of the GALCIT 17 inch (43 cm) diameter 
shock tube (figure 1) (Hesselink 1977, Appendix A). I ts  function is to fill a 26.7 cm 
square by 35.2 cm long rectangular volume a t  atmospheric pressure with two gases 
incompletely mixed on as small a scale as possible. The apparatus consists of an array 
of fine jets, alternately of helium and dichlorodifluoromethane (CCl,P,, hereafter 
referred to as refrigerant 12, or €312) arrayed in a checkerboard pattern on 3.2 cm 
centres behind coarse grids on opposite vertical sidewalls of the box. The grids are 
rapidly retracted (in - 400 ms) flush with the sidewalls just  before the shock tube is 
fired. The top and bottom walls of the box are fitted with 15 cm diameter optical 
windows for diagnostics, and the vertical upstream and downstream walls of the box 
are ‘shutters’, which can be opened rapidly (in - 100 ms) just before shock arrival. 
The operation of the jets, the grids and the shutters is automated in such a way that 
the arrival time of the shock relative to  the decay of the random density field in the 
box can be varied. 

The gas mixture has the same density as air so the mean interface between the 
scattering region and the uniform gas in the shock tube remains parallel to the plane 
of the incoming wave during a run. The mean speed of sound of the mixture is also 
matched to that of air to minimize reflection of the shock from the upsteam and 
downstream interfaces. In this paper we present results from the study of the 
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FIGURE 1 .  Cross-section and top view of the turbulent-mixer apparatus. 

propagation of shock waves of three different strengths ( M ,  = 1.007, 1.03 and 1 . 1 )  
through the random medium. 

2.2. Experimental procedure 
All mechanical functions of the experiment are controlled by a logic circuit. During 
a typical run the gas flow to the jets is turned on for 1.5 s, the grids start to retract 
a t  t = 1.3 s and are fully retracted by t = 1.7 s and the shutters begin to open a t  t = 
1.6 s and are fully open by t = 1.8 s. The shock is only fired (typically a t  t = 1.94 s) 
after confirmation that the shutters are fully open. With all this complexity the 
variation in time of arrival a t  the test section of the weakest shock waves, M ,  = 
1.007, is nevertheless very small, less than 5 ms in a typical series of runs; the 
variation in arrival time for the stronger waves is even shorter, typically 1-2 ma. 

2.3. Pressure measurements 
For the purpose of recording the pressure waveform of the perturbed shock wave five 
piezoelectric transducers are mounted in a movable false endwall downstream of the 
scattering region. One of the transducers is mounted in the centre of the endwall, and 



518 L. Hesselink and B.  Sturtevant 
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Film plane I1 
(movie or still) 

FIGURE 2 .  Optical configuration in relation t o  the shock tube. 

L, 

L, 

the other four are positioned 3.2 cm radially outward in a cruciform array. The rise 
time of the transducers is typically 1 ps. The false endwall can be located either just 
(i.e. 0.64 em) downstream of the downstream shutter or 21.6 cm further, near the end 
of the shock tube. Thus, the effect on the distorted shock wave of propagation 
through uniform air after emerging from the scattering region can be studied. 

2.4. Optical techniques and digital image processing 
The optical system that was designed and built for obtaining the flow-visualization 
photographs is shown in figure 2. A beam expander consisting of lenses L, and L, 
collimates the output of a 4 W argon-ion laser into a 15 em diameter beam. The 
plane, monochromatic wave of wavelength h = 5145 is normally incident upon 
the random medium. The scattered radiation is recorded on film either at the 
shadowgraph plane I using no imaging optics, or a t  the film plane 11, which is the 
conjugate plane of the centre of the test section, through three lenses L,, L, and 
L,. In  the back focal plane of lens L, spatial filtering can be performed by either 
positioning a pinhole for speckle photography or an opaque dot for schlieren 
photography t . 

t Note tha t  there is no essential optical difference between schlieren and speckle photography, 
other than the distinction tha t  the former is produced by high-pass filtering and the latter by low- 
pass filtering of the  scattered radiation at the Fourier-t,ransform plane. 
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Three types of photographs have been taken during the course of this 

(i) Shadowgraph photographs of the random medium in the absence of the shock 
wave. An electronic shutter gates the laser output to produce an exposure 
time of 1 ms. 

(ii) Schlieren and shadowgraph still photographs of the shock wave propagating 
through the random medium. For these photographs the laser is replaced by 
a spark-gap white-light source that produces a flash of a few microseconds 
duration. 

(iii) Schlieren and shadowgraph movies of the shock wave as i t  propagates 
through the medium. The exposure time is set by the operation of a high- 
speed motion picture camera to be 4.0 ps a t  a framing rate of 50000 f.p.s. or 
2.7 ps at a framing rate of 75000 f.p.s. The spatial resolution of the high-speed 
camera is 26 line-pairslmm in the direction of rotation of the camera drum 
and 32 line-pairslmm in the transverse direction on the film. 

The negatives of the photographs are digitized on a microdensitometer, and the 
digital data are stored on magnetic tape for further processing. The results of the 
processing are displayed on graphs and the digital data can be reconstructed into a 
photograph using a laser printer. 

Information about the statistical properties of the random scattering medium is 
obtained using the method of Hesselink & White (1983) for processing images on 
shadowgraph photographs. A perturbation analysis of the wave equation is used to 
analyse the data in the limit of vanishingly small optical wavelength and fluctuation 
amplitude. Under these assumptions geometrical optics theory applies and recourse 
need not be made to the Born approximation. The spectrum of irradiance fluctuations 
a t  some plane downstream of the scattering medium is computed in terms of the 
scattering parameters. Assuming homogeneity and isotropy, the (two-dimensional) 
spectrum of the intensity fluctuations in the observation plane is related to the three- 
dimensional spectrum of the index of refraction fluctuations by a Volterra integral 
equation. The analysis shows that the three-dimensional power spectral density 
(p.s.d.) S3(k )  can be expressed in terms of the two-dimensional p.s.d. of the recorded 
light intensity variations X,(k) as follows : 

investigation : 

where k is the magnitude of the wave vector, 6 = DID,  D is the thickness of the slab, 
and fi is the distance between the entrance plane of the medium and the location of 
the film plane. 

2.5.  Performance of the apparatus and properties of the random medium 

A series of experiments was carried out to define an optimum operating point of the 
apparatus and to document the properties of the random medium under those 
conditions. Values of important parameters finally settled upon are as follows : mean 
concentration of helium by volume = 80 YO ; mean acoustic index of refraction 
relative to air a t  standard conditions = 1 .OO f 0.06 ; optical index of refraction = 
1.00024f3.1 x lop5. The above tolerances are the variances of the cited quantities 
calculated from the measured density fluctuations. 
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FIGURE 3. (a )  Mean and ( b )  r.m.s. density profiles measured at the centre of the turbulent medium 
using an aspirating density probe. The mixture consists of helium and refrigerant 12. Gas injection 
into the box is terminated a t  t = 1.5 s. 

2.5.1, Density probe 
Measurements of mean density and of density fluctuations during the gas-mixing 

phase of the experiment were made in tests during which no shock waves were fired. 
An improved version of the density probe of Brown & Rebollo (1972) was used. 
Unfortunately, in view of the small mean velocities inside the box in the present 
experiments, a fixed density probe does not provide as much data describing the 
statistics of the spatial variation of density as would be the case if gas were being 
convected past the probe. One of the purposes of the mean-density measurements 
was to verify that the mixture was homogeneous and free from horizontal or vertical 
stratification. 

Helium concentration measurements. The variation of the helium concentration 
during the gas-mixing phase of the experiment is shown in figure 3. The upper plot 
shows the mean concentration of helium by volume, while the lower plot gives the 
r.m.s. fluctuation level as a function of time. The solid curves represent data from a 
probe located 6.6 cm from a sidewall grid, 12 cm from the nearest shutter and 
13.3 cm above the bottom of the box. The dashed lines depict data from a probe a t  
the centre of the box, 6.6 cm above the bottom. Initially, the probe samples air in the 
test section, and the output voltage of the probe has a value that happens to be about 
the same as would result from a mixture of 50 % helium and 50 YO R12. Thus, the 
initial portion of the trace does not represent the true helium concentration and can 
only be used as an indication of the rapidity with which the air is flushed from the 
mixing zone. The difference between the data from the two different locations in the 
box is explained by the fact that  the steady-state concentration level is reached 
much earlier near the grids than in the middle of the box. An amount of gas equal 
to about four times the volume of the test section is needed to completely flush out 
the air and to reach a steady state. 

The equilibrium state is perturbed when the jets are turned off (at t = 1.5 5). At 
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FIGURE 4. Mean density measurements as a function of the height above the  bottom of the  
turbulent mixer. 

that instant, both plena store the same volume of gas, but the pressure in the R12 
tank is higher than in the helium reservoir, yet the helium exhausts a t  a faster rate. 
Consequently, the helium content of the injected gases decreases as time increases, 
and after the jet flow terminates a new plateau is reached. Later, a t  t = 2.5 s, the 
concentration drops again because, after the shutters open, air eventually permeates 
into the box. 

The data for r.m.s. fluctuation shown in figure 3 ( b )  are influenced by the same 
changes of operating conditions. The first increase is associated with removal of air 
from the box. Then, the magnitude of the r.m.s. fluctuation decreases monotonically 
until a steady value is reached. The low level of fluctuations during this second phase 
suggests that the turbulent mixing process is very efficient. After the jets are turned 
off, the r.m.s. fluctuations again increase, mainly because the concentration of 
helium decreases with increasing time until the plena are depleted. During the final 
stages of the injection phase almost pure R12 a t  very low velocity flows through the 
jets. In fact, this behaviour suggests an alternative operating scheme to increase the 
r.m.s. fluctuations: the test section could first be filled with pure helium and then 
R12 could be injected for such a length of time that, after the jets are turned off, the 
average concentration is 80 % helium by volume. However, in this method the flow- 
control system could not be tuned by the scheme to be described later in this section. 
Figure 4 shows the vertical profile of helium concentration at the centre of the box, 
obtined by averaging the data from five runs a t  each measuring station. The 
observed 2 %  variation in the mean value is within the experimental accuracy. 

After the shutters open, the air outside the test section begins to diffuse into the 
test section by turbulent mixing enhanced by the wakes of the opening shutters. The 
width of the resulting interface has been estimated by comparing the signal from one 
probe near the centre of the box with the signal from a probe positioned very close 
to a shutter, in this case both probes were located equidistant from the two sidewalls 
containing the jets and at  the same height above the bottom wall. It was found that 
the transition region extends approximately 7 em into the test section when the 
shock is fired. However, since on the interface both mean density and speed of sound 
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are matched, the transition region has little effect on the shock wave other than to 
initiate the scattering process. 

Determination of large lengthscales. A pair of density probes were used to obtain 
two-point correlation functions for the density fluctuations. For each separation of 
the probes the parameters of the correlation function, assumed to be Gaussian, 
were computed by averaging the results of 16 runs. From the correlation function, 
the integral scale L, was determined to be approximately 1.5 em. The rather large 
scatter in the data, caused by the small convection velocites in the apparatus, 
precluded the determination of the actual shape of the correlation function. 

Final tuning of the apparatus. The procedure for final testing of the performance 
of the turbulent mixer involves both density-probe measurements and pressure 
measurements. With one probe located near each sidewall containing the jets, five 
runs are made and the average density is calculated. The settings of the gas supply 
system are altered until both probes indicate the same mean concentration of helium 
to within & 1 %. The probes are then removed, and a further test of the properties 
of the medium is performed by running the full system as in a normal run except that 
a 2.4 s delay is introduced to allow complete mixing in the test section before the 
shock wave is fired. The settings of the gas-flow control system are then adjusted 
before repeated shock tube runs until the pressure signals from the transducers in the 
false endwall indicate that the incident shock wave is not perturbed in any way. This 
turns out to be a very stringent test, for it verifies that  both the mean speed of sound 
and the acoustic impedance of the mixture are equal to those of the air in the shock 
tube. 

Pressure signals recorded after making the final adjustment are shown in figure 5. 
The oscillogram (a )  displays two pressure signals which are simultaneously measured 
in the false endwall during one run in which there is a long delay before the shock 
tube is fired. The gauges are located 6 c m  apart and the shock Mach number is 
M ,  = 1.03. The observed pressure histories are typical of unperturbed shocks. In 
particular, the high-frequency fluctuations immediately behind the front are due to 
ringing of the transducers caused by the steep-fronted shock. The lower-frequency 
variations of pressure on the traces may be due to diffracted waves from small gaps 
that exist between the shutter blades and the sidewalls of the test section. It is 
concluded that neither the mean properties of the scattering medium nor the 
interface between the quiescent air in the shock tube and the helium-R12 mixture 
significantly modify the incident shock wave. 

For comparison, the effect of the turbulence on the incoming, wave in a run in 
which the long delay is not introduced is shown figure 5 (b ) .  The signals are measured 
with the same transducers and at  the same measuring stations as above. The top 
trace shows that the shock strength has been increased above that of the incident 
shock and that the initial disturbance is followed first by an expansion and then by 
a slow compression. The bottom trace has a smoother rise and does not show any 
pressure overshoot, the leading disturbance being followed by an increase of the 
pressure toward the unperturbed value. Thus, it is evident that  the pressure 
signature of a scattered wave can be very different a t  different locations on the wave 
front . 

2 5 . 2 .  Image processing : small lengthscales 

To test the method described in $2.4 for determining the power-spectral-density 
function of the random medium, the spectrum of the light intensity fluctuations that 
are recorded on film has been computed and averaged from the digitized images of 
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(4 (6)  

FIGURE 5. Pressure profiles of shocks ( a )  after turbulence decay and (6) with turbulence. The two 
traces are measured simultaneously at different locations on the shock front. The horizontal time- 
scale is 20 ps/div; vertical scale is 1.5 p.s.i./cm. 
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FIGURE 6. Power-spectral-density curve for intensity fluctuations recorded 011 film using the 
shadowgraph method. 
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FIGURE 7. Three-dimensional power-spectral-density curve of concentration fluctuations in the 
random medium. 

eleven still photographs of the medium unperturbed by the passage of a shock wave 
(figure 6). Care is taken to limit the dynamic range of the intensity fluctuations so 
that the response of the photographic film is linear in the range of spatial scales of 
interest in this work ( -  0.05---2.0 cm). The standard deviation is indicated by the 
error bar in the figure. Then, from the two-dimensional power spectrum of the image 
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the three-dimensional spectrum of the medium is calculated using equation (1) 
(figure 7 ) .  For comparison, two lines with slopes - 11/3 and -9  are shown on figure 
7. According to Kolmogorov similarity, in homogeneous turbulence the p.s.d. (the 
spectriim function) in the inertial subrange varies as the - 11/3 power, while in the 
viscous subrange the Heisenburg spectrum, supported to a certain extent by 
experiment, suggests that  the spectrum should vary approximately as the -9 power 
(Townsend 1976). In  the figure the transition from the - 11/3 power to the -9 power 
occurs a t  a wavenumber k = 5.3 cycles/cm = 33.3 rad/cm, which corresponds to a 
lengthscale of 1.9 mm. Taking this length to  be the Kolmogorov microscale yp,  i t  can 
be seen that in the turbulence studied in the present experiments there is about one 
order-of-magnitude separation between the microscale and the integral scale. 

It is in principle straightforward to compute the correlation function from the 
three-dimensional p.s.d. using Fourier-transform techniques. However, a difficulty 
arises. Thc p.s.d. function for small wavenumber is not accurately known, because in 
this range the sampling is inadequate owing to the finite size of the photograph. 
Therefore, the asymptotic behaviour of the correlation function is uncertain, and 
accurate results cannot be obtained. An attempt to compute the correlation function 
of the medium directly from the correlation function of the photograph also produces 
unreliable results (Hesselink & White 1983) for essentially the same reason. The 
accuracy of the data associated with the large-scale features can only be improved 
by substantially increasing the population used for the ensemble averages. 

3. Experimental results 
3.1. Photographs 

Both schlieren and shadowgraph techniques were used to visualize the shock waves 
and the random medium in these experiments. The two methods emphasize different 
aspects of the phenomenon. The schlieren system brings out shock-wave topography 
much more clearly than the shadowgraph pictures, presumably due to its greater 
overall sensitivity, while the shadowgraph emphasizes the small scales in the random 
medium and is more amenable to quantitative treatment. However, neither the 
schlieren nor the shadowgraph system actually used was sensitive enough to detect 
the weakest shock waves studied ( M ,  = 1.007), though such shocks were easily 
visible in a uniform (non-scattering) medium. On the othcr hand, waves of strength 
M ,  = 1.03 and 1.1 could conveniently be visualized by these methods ; figures 8 and 
9 show schlieren photographs taken with spark flash illumination of such shocks 
propagating through the shock-tube test section. Typical shadowgraph photographs 
are shown in figure 10. Finally, figures 11 and 12 show sequences of frames from 
schlieren and shadowgraph movies, respectively, of shocks propagating through the 
random medium. These figures do not show the detail of the still pictures because 
the motion-picture camera has much lower spatial resolution. In  all photographs the 
diameter of the viewing window is 15 cm. 

It is clear from all the photographs that propagation through the random medium 
has strongly modified the wave front, which in a uniform gas appears thin and 
straight. In  the schlieren photographs and, to a certain extent in the shadowgraph 
photographs, the shock wave appears to have been broken up into a succession of 
fronts which fall within a region of approximately 1 ern thickness. However, because 
schlieren and shadowgraph photography integrate across the width of the test 
section, another possible interpretation of the striations observed on the front, an 
interpretation which has, in fact, been proposed by some authors, is that  they 
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FIGURE 9. Schlieren photographs of M ,  = 1.1 shocks moving from left t o  right through the 
random medium. 
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M,  = 1.03 1.1 

FIGURE 10. Shadowgraph photographs of shocks moving from left to  right through 
the random medium. 

represent the maxima and minima of wrinklesj- on a single wave front. However, if 
this were the case, since the randomness is distributed isotropically in the medium, 
wrinkles of the same amplitude would be seen in profile on both the leading and 
subsequent fronts. 

It was shown analytically by Kulkarny & White (1982), and confirmed by the 
numerical ray-tracing calculations of $4, that even when the amplitude of the sound- 
speed fluctuations is small, the tendency to focus is so strong that substantial wave 
folding results. Calculations on geometrical acoustics show that, under conditions 
typical not only of the present experiments but also of sonic booms from supersonic 
transports propagating through the terrestrial atmosphere’s turbulent boundary 
layer, focusing occurs. Therefore the proper interpretation of the image of the 
scattered field in figures 8-12 is that it represents a multiplicity of wave fronts, rather 
than a single, wrinkled front. This conclusion is further confirmed by the measured 
pressure histories (cf. $3.2) in which the pressure closely behind the initial disturbance 
fluctuates with rather large amplitude, suggesting the presence of scattered waves. 
Consequently, for the purpose of this paper we adopt the view that the effects of the 
random medium on the shock front can best be considered in terms of random 
focusing and defocusing of the front by the inhomogeneities in the medium, which 
constitute a random array of lenses (Pierce 1968) and that, in the present 
experiments, the refraction is sufficiently strong that the wave fronts become 
multiply folded. 

The photographs of figures 8-12 (especially the schlieren photos) show that the 
fluid in the test section has also been modified by the passage of the shock wave. In 
particular, the large number of bright lines which appear in the shocked fluid to the 
left of the wave fronts in figure 9 are remarkable. These features seem to be oriented 
preferentially in the direction parallel to the wave front, giving the impression that 

t I n  this paper we use the term wrinkle t o  describe relatively short-wavelength distortions of a 
wave front, such tha t  many wrinkles would be visible on a given front in the test section. 
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FIGURE 11. Schlieren movie of M ,  = 1.03 shocks moving from left to right through 
the random medium. 

a rather substantial compression of the upstream fluid has occurred perpendicular to 
the plane of thc shock wave, together with a corresponding elongation parallel to the 
shock wave. Indeed, the apparent compression is far greater than that which would 
be calculated from the shock jump conditions. This effect, which is probably 
enhanced by the formation of caustics in the refracted optical field at the film plane, 
is not understood. 

3.2. Pressure Jield 

The pressure measurements exhibit the nature of the initial disturbance and record 
the scattered field behind the main front. A major consequence of focusing in the 
random medium, if it occurs, is that not all of the wave fronts in the scattered field 
will remain discontinuous in amplitude, because acoustic fronts that have passed 
through one or more foci are only discontinuous in the first or higher derivatives 
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FIGURE 12. Shadowgraph movie of M ,  = 1.03 shocks moving from left t o  right through the 
random medium. 

(Priedlander 1958). Consequently, scattered and focused fronts may be difficult to 
detect. 

3.2.1. General characteristics of the pressure signals 

A representative series of oscillograms recorded simultaneously by four different 
transducers is shown in figure 13 for the three shock strengths, M ,  = 1.007, 1.03 and 
1 . 1 .  For the M ,  = 1.007 case, trace 1 shows three discrete pressure jumps in the initial 
rise which are clearly caused by a succession of three shocks. Similarly, the front on 
trace 3 may be composed of two jumps, and the front on trace 4 shows three jumps, 
but their amplitudes are small, so they are somewhat difficult to distinguish. Thus 
it frequcntly happens that the weak shock waves show relatively slow rise times, 
apparcntly becausc they arc made up of  a succession of weaker fronts. 
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FIGURE 16. Schematic pressure profiles showing (a) no precursor and ( b )  a precursor. The letters 
a-e indicate significant points on the traces, described in 33.2.1. 

Another important observation is that all 128 pressure traces for the M ,  = 1.007 
shocks depart from the baseline much more gradually than for the stronger shocks, 
in an upward-curving trace that begins as much as 2 4  ps ahead of the main 
disturbance, a feature we have labelled precursor. In figures 14 and 15, representative 
examples are presented of pressure histories observed after a M, = 1.007 shock wave 
has propagated through the volume of turbulence, showing traces that are especially 
sharp or peaked and traces with particularly slow rise times, respectively. 

An alternative explanation of the long rise times of the shocks arises from the fact 
that a gas with a structurally complicated molecule is used as the test medium, so 
the relaxation of molecular vibrational degrees of freedom might be greatly different 
than for, say, a monatomic gas, and the shock front is consequently substantially 
dispersed.7 However, this possibility can be eliminated in the case of R12 because the 
appropriate relaxation times a t  atmospheric pressure are much shorter even than the 
time response of the pressure transducers. 

Stronger shock waves are less affected by the scattering properties of a random 
medium than are weak shocks. Nevertheless, the pressure histories of the M, = 1.03 
and 1.1 shocks (figure 13) exhibit many interesting features. The second trace of the 
M, = 1.03 case is noteworthy because it shows a sharp maximum just behind the 
wave front, followed by an expansion. This is referred to as a peaked waveform. Also, 

t The authors are grateful to M. J. Lighthill for calling this to our attention in connection with 
early experiments with CO, (Hesselink 1976). 
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the shock arrival times documented in figure 13 show variations from one transducer 
to another of order 5 ps. 

The traces for the M ,  = 1.1 shocks initially rise sharply; no precursor signal has 
been observed on any of the M ,  = 1 .1  traces. Furthermore, the magnitude of the 
pressure fluctuations behind the waves are substantially reduced. The high- frequency 
fluctuations evident on the strong-shock pressure traces is due to  transducer ringing 
(cf. 52.5.1). The second trace of the M ,  = 1.1 case shows a distinct but weaker second 
front behind the main disturbance. 

The important features of the pressure traces are shown schematically in figure 16. 
Two typical cases are shown : in figure 16 (a )  the main disturbance is relatively sharp 
while in figure 16(b) it  is preceded by a precursor. The distance a-b in the figure 
defines the so-called ‘arrival time’ of the wave front, measured from the time at 
which the three recording oscilloscopes are simultaneously triggered. The time 
bctween points c and d will be called the ‘shock ’ or ‘ wave-front rise time ’. The 
pressure corresponding to the vertical distance between c and d will be called the 
‘shock pressure’. The ‘peak pressure’ of the trace occurs a t  the point e, and the time 
lag between the main front and the peak pressure, called the ‘time interval to peak 
pressure’, is defined as the time from d to e. Any separation between points b and 
c signifies the occurrence of a ‘precursor’. The shock and peak pressures are 
normalized with the unperturbed shock strength. 

The features of the pressure traces described above are all remarkably similar 
to those previously identified during early flight tests examining the sonic boom 
(Maglieri & Parrott 1963). In  those tests both ‘peaked ’ wave forms with substantial 
overshoot and ‘rounded ’ signatures with abnormally long rise times were recorded. 
The present laboratory-generated traces show that slow rises, which one might 
describe in simple terms as rounded, are often actually made up of a series of small 
steps. As in the flight tests, both the peaked and rounded forms of pressure traces 
occur in our experiments frequently but randomly, in addition to traces with more 
conventional-looking shock discontinuities such as, for example, trace 4 of the M ,  = 
1 . 1  case and trace 3 of the M ,  = 1.03 case in figure 13. Rather extreme examples 
of peaked and rounded pressure histories are often seen simultaneously even at 
adjacent pressure transducers in the same experiment, i.e. in close proximity on the 
same shock front. Crow (1969) showed from considerations of geometrical acoustics 
why such behaviour is to be expected. 

The qualitative nature of the pressure traces may be more clearly understood 
in terms of the tendency of a random medium to randomly focus and defocus 
propagating waves. It is known (Sturtevant & Kulkarny 1976) that, depending on 
the strength of the incident shock wave, the intensity of the perturbations of fluid 
properties causing focusing and the size of the focusing elements, the wave fronts 
may or may not subsequently cross and fold. Folded wave fronts typically show a 
slow initial pressure rise, similar to the property we have labelled precursor, followed 
by a more rapid increase in the primary (focused) front (Friedlander 1958). On the 
other hand, unfolded wave fronts near foci typically exhibit a sharply peaked 
pressure signature with a rapid expansion following immediately behind the primary 
front. Trace 2 of the M ,  = 1.03 case, figure 13, is representative of this behaviour. 

3.2.2.  Wave-front rise t ime: M ,  = 1.007 
The results of the measurements of the rise time of theJirst major disturbance on 

the weakest shock waves studied in these expriments are shown in figure 17. The 
minimum value is limited to 1 ps by the response of the pressure gauge. The stronger 
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FIGURE 17. Histograms of shock rise time measured at ( a )  the exit shutter or a t  ( b )  the down- 
stream station ; dots connected by line denote results from numerical ray-tracing calculations. 

shock waves all show rise times within the resolution of the transducers. The rise time 
implied by the calculated Taylor thickness of the M ,  = 1.007 shock wave is 
approximately 0.1 ps, so measured rise times of more than 1 ps imply an increase by 
scattering of the thickness of the incident wave by as much as one order of 
magnitude. Figure 17(a) shows that, in fact, in 13 out of 64 of the traces recorded 
near the downstream boundary of the scattering medium, rise times from 4 to 10 ps 
were observed in these experiments. Another remarkable observation which will be 
discussed below is the similarity between the distribution of rise times immediately 
downstream of the scattering medium (figure 17a) and after 22 cm of clear-air 
prop gation (figure 17b). 
Wd now consider the possibility that tilting or wrinkling of an otherwise single, 

thin shock front could cause an apparent thickening of the initial front. In  order that 
large-scale and/or small-scale distortions (i.e. tilt or wrinkling, respectively) of a 
single front might cause the observed rise times, they must be of large enough 
amplitude that the reflection of the distorted front from the face of the 5 mm dia. 
transducer takes 4-10 ps. One measure of tilt on a 6.3 cm scale (the separation 
between the transducers on the false endwall) can be obtained from the measurements 
of the mean difference of arrival times a t  pairs of transducers (cf. $3.2.4), the largest 
value of which is 14.9 ps. It implies that the mean rise time caused by distortions of 
this scale on a shock front arriving a t  a 5 mm diameter transducer cannot be more 
than 1.2 ps. However, occasionally, individual differences of arrival time can be 
somewhat larger than the mean value, and the most tilted portion of the front could 
be just that portion which actually touches the transducer. I n  fact, the maximum 
observed arrival-time difference between any two transducers in all the experiments 
was 20 ps (run 4670) a t  the downstream boundary of the random medium and was 
24 ps (run 4708) after 22 cm of clear-air propagation. Assuming that the point with 
maximum slope on a nominally sinusoidally distorted wave front impacts the 
transducer, we obtain 5-6 ps for the greatest possible rise time caused by this effect. 
Thus, titled shock fronts (more specifically, fronts distorted on the scale of 6 cm or 
so) could have caused at  least some of the rather large effective rise times observed. 
As for the possibility that wrinkling of the shock front on a scale smaller than the 
diameter of the pressure transducer (say, on the scale of the microstructure y, of 
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J t - t d  I1 --- - -  
FIGURE 18. Schematic of a wrinkled wave front incident on a pressure transducer 

the density inhomogeneities) might cause large apparent rise times of the initial 
disturbance, wave-front distortions of up to 1.5 mm amplitude, with wavelengths of 
only 5 mm, are simply not consistent with the photographic evidence of $3.1. 

As already mentioned, it is significant that the distribution of measured rise times 
of the M ,  = 1.007 shock waves after 22 cm of clear-air propagation is similar to those 
a t  the immediate downstream boundary of the scattering region. We first consider 
the wave-front geometry neglecting nonlinear steepening and then we discuss 
steepening effects. I n  figure 18 a shock wave moves from top to bottom, and pressure 
transducers are located a t  planes I and I1 separated by distance A .  Distortions on the 
shock front a t  plane I have a lateral scale I, and are of such an amplitude as to give 
a radius of curvature R. The size of the transducer d is small compared with I,. We 
suppose that the slope of the wave a: determines the apparent rise time of the 
transducer in plane I. According to geometric optics, after propagation of the shock 
to plane 11, the magnitude of the slope a: on the transducer in plane I1 must have 
decreased as long as R < $4, because the radius of curvature will have increased. 
Consequently, the apparent rise time due to tilt must decrease. On the other hand, 
if R > ;A, in those few cases for which R - A and also the wave is convergent onto 
plane I1 the rise time may increase to  the effectively larger rise time of a single 
wrinkled front. Otherwise, i t  will also decrease. Only in the limiting case, when a 
substantial fraction of the sample of initial wave fronts has R x &I, so that  focusing 
typically occurs about half-way between I and 11, will the measured rise time a t  I1 
be the same as a t  I. I n  the present experiments A = 22 cm, so perturbations on the 
shock wave of R - 10 cm with a lateral scale I, - 6 cm would exhibit the same 
apparent rise time a t  I as a t  11. We conclude from these observations that a 
substantial number of incident wave fronts in our experiments are distorted with 
R z 10 em. It is interesting to compare this result with the radius of curvature that 
a shock would have if i t  originated as a spherically diverging wave a t  its first point 
of focus. The distance that an acoustic shock propagates through the medium of the 
present experiments before i t  first focuses with probability one can be calculated 
from the results of $4.4 to be about 5 cm. Thus a t  the downstream station such a 
shock would have a radius of curvature of 30 cm. The result that the actual value is 
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FIGURE 19. Histograms for time to peak pressure measured at the exit-shutter station. 

substantially smaller is consistent with the intuitive idea that the effective centre 
should be somewhere between the first focus and the measuring station. 

3.2.3, T i m e  interval to peak pressure 

Histograms of the elapsed time between the main front and the maximum 
observed pressure are shown in figure 19. They show that the peak pressure occurs 
with highest, probability within 20 ps behind the front, but that a substantial number 
of samples of up to 120ps (40mm) occur. The mean values of the elapsed time 
between the shock front and the maximum pressure for the three cases M ,  = 1.007, 
1.03 and 1.1 arc 58, 52 and 36 ps, respectively. 

Of the two points of view that can be adopted in considering the dispersion of 
shock waves in a random medium, we have adopted the one that emphasizes the 
geometrical nature of the process; namely, that the structure of the laboratory 
pressure traces and visualization photographs is attributable to a succession of 
scattered waves behind the initial disturbance. The second view, put forth by Plotkin 
& George (1972) in a statistical theory utilizing a second-order perturbation scheme, 
gives the result that the scattering process disperses the shock wave in the same way 
that a greatly increascd viscosity would. In fact, in their theory the effective 
viscosity turns out to be a sort of eddy viscosity which depends on the statistical 
properties of the medium. Thus, the thickness of, for example, weak shock waves is 
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FIGITRE 20. Histograms for time to peak pressure measured 21.6 cm heyond thr exit-shutter 
station. 

simply the Taylor thickness appropriate for a substance with this greatly increased 
viscosity. 

The theory of Plotkin & George describes a steady-statc configuration in which 
the tendency of the random medium to disperse the wave is properly balanced by 
nonlinear steepening. An order-of-magnitude estimate, obtained by considering one- 
dimensional non-steady characteristics, of the distance in whivh a wave of initial 
thickness 6 and strength M steepens to a discontinuity once i t  leaves the random 
medium is 

Thus, shock waves of strength M ,  = 1.007, 1.03 and 1.1 with, say, rise times to peak 
pressure at plane I (figure 18) less than about 8 ps (6 < 3 mm), 40 ps (6 < 10 mm) and 
125 ps (S < 40 mm), respectively, would steepen to discontinuities by the time they 
reached plane 11 (I, = 22 em), but thicker waves would not. That is, by this 
argument the M ,  = 1 .1  and, perhaps, the M ,  = 1.03 waves observed immediately 
downstream of the scattering medium should steepen to discontinuities in 22 cm of 
uniform propagation, while the M ,  = 1.007 waves should not. In  fact, as shown by 
comparing figure 20 with figure 19, the changes between stations 1 and 11 are rather 
small. This result suggests that  the steepening argument cannot be applied in 
the region immediately downstream of strong scattering where significant focusing 
occurs. 

3.2.4. Shock distortion from arrival-time measurements 

The mean value of the differences between the time of arrival of the initial 
disturbance a t  the vertical and horizontal arrays in the measuring plane are 
tabulated in table 1. The results indicate a slight vertical stratification; the 
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Shutter Endwall 

Horiz. Vertical Horiz. Vertical 

M 7 1 2  734 7 1 2  734  

1.007 -2.46 14.92 -2.06 8.96 
1.03 -0.82 -7.31 5.25 5.56 
1.1 -3.0 2.38 -5.13 4.01 
rij = difference between tab for transducers i and j. 

TABLE 1. Differences in arrival times 

0 A 

0 

0 
1.007 1.03 1.1 

M* 

FIGURE 21. Arrival-time fluctuations of the initial disturbance, referenced t o  the arrival time of the 
same front at the centre transducer. Measurements are made at the exit-shutter location (A) and 
21.6 ern beyond (0). 

maximum mean arrival-time difference between the top and bottom gauge is 14.9 ps, 
which corresponds to a 1.5% variation in the acoustic index of refraction. 

The magnitude of the r.m.s. fluctuation of the arrival time of the initial 
disturbance at each transducer in the measuring plane, referenced to the arrival time 
of the same front a t  the centre transducer, is shown in figure 21. As expected, the 
stronger waves are considerably less sensitive to perturbation by the random 
medium. Also, modest reduction of the fluctuations, to nearly the resolution of the 
pressure transducers, is observed after 22 cm of clear-air propagation. 

3.2.5. Amplitude of the initial disturbance 

Histograms of the measured normalized shock pressure p,,/p,, incident (cf. figure 
16) are presented in figures 22 and 23. The sample population is 64 for the M ,  = 1.007 
and M ,  = 1.03 shocks and 32 for the M, = 1.1 shocks. Measurements giving p < 1 
indicate attenuated shock waves while p > 1 indicates waves stronger than the 
incident shock. The mean normalized shock strength is less than unity, as expected, 
except for the M ,  = 1.1 shock wave just downstream of the random medium. This 

I8 FLM 196 
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FIGURE 22. Histograms for shock pressure measured a t  the exit-shutter location. 
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FIGURE 23. Histograms for shock pressure measured a t  the station 21.6 cm beyond the exit 
shutter. 
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FIGURE 24. Maximum and minimum shock and peak pressures. The squares, circles and triangles 
denote the maximum normalized peak pressure and shock pressure and the minimum normalized 
shock pressure, respectively. The solid symbols represent measurements taken near the exit shutter 
and the open symbols denote measurements at a station 21.6 cm beyond. 
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FIGURE 25. Histogram for the peak pressure measured at the exit-shutter location. 

exception is probably due to the small sample population for that case. On the other 
hand, the mean (ensemble-averaged) pressure a t  much later times, after the major 
perturbations on the shock have passed the measuring station, is nearly equal to the 
unperturbed shock strength, so little energy is reflected upstream either a t  the 
boundaries of the random medium or from within it. 

In-2 
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FIGURE 26. Histogram for the peak pressure measured a t  the station 21.6 em beyond the exit- 
shutter location. 

Figure 24 shows the maximum and minimum observed values of shock amplitude 
at the two measuring stations. The minimum normalized shock amplitude increases 
and the maximum decreases with increasing Mach number, both trends being in 
agreement with the expected insensitivity of stronger shock waves to fluid 
inhomogeneity. This result can also be interpreted in terms of the behaviour of 
focusing shock waves, for i t  is known that the maximum amplification of a shock 
wave a t  a focus decreases with increasing shock strength owing to  nonlinear effects 
which increase the size of the focal volume (Sturtevant & Kulkarny 1976). It is 
interesting to note in figure 24 that  the maximum observed shock amplitude is 
approximately 1.9 times the amplitude of the incident wave, nearly the same as 
observed in field studies of the focused sonic boom (Wanner et al. 1972) and in the 
laboratory by Sturtevant & Kulkarny. 

3.2.6. Peak amplitude 
Figure 24 shows maximum observed values of peak amplitude (cf. figure 16). In  

figure 25 are presented histograms of the peak pressure a t  the station near the 
downstream boundary of the random medium, and in figure 26 are the results 
obtained 22 cm further downstream. It is evident that  all peak pressures are larger 
than or equal to the strength of the shock incident upon the random medium. This 
is of course consistent with the fact that  the average amplitude of the pressure 
signature far behind the front is, within the accuracy of the measurements, equal to 
the strength of the unmodified shock, and is at the same time, by definition, less than 
or equal to the maximum pressure. Figure 25 shows that near the downstream end 
of the random medium the most probable value of the peak pressure is 1.25 for all 
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three Mach numbers. At the downstream station there is a tendency for the most 
probable peak pressure to be smaller. 

4. Interpretation of results by ray-tracing calculations 
The trajectories of the rays of acoustic waves through a computer-generated two- 

dimensional random field which models the conditions of the present experiments 
have been calculated. The medium is computed by convolving a set of normally 
distributed random numbers (white noise) with a prescribed weighting function. The 
nonlinear ray equations are integrated using the method of characteristics. I n  the 
calculated scattering medium the fluctuation level of the acoustic index of refraction 
(6%) and the average number of turbulent structures that the ray paths traverse 
(21.3) are the same as in the experiments. The computational mesh in the box is 
128 x 128. By starting the calculations from any one of the four sides of the box, the 
same medium can be used as the source for four different propagation calculations. 

4.1. The computer-generated random medium 

The index-of-refraction field n ( x ,  y )  can be represented by a convolution integral, 
in which a two-dimensional white-noise field w(x ,  y )  is smoothed by a weighting 
function f ( x ,  y )  : 

n ( x , y )  = l l y m f ( x - x ’ ,  Y-Y’) w(x’,Y’) dx’dy’ (4.1 ) 

The purpose of the first part of the calculation is to determine f ( x ,  y ) .  The two- 
dimensional correlation function R(x- X I ,  y - y’) of n is 

R ( x  - x’, y - y’) = ( n ( x ,  y )  nk’, y’))  

= ( ~ j y = J ; m f ( x - x ~ ~ ;  y-y”f(x’-x’’’, y’-y”’) w(x”, y”) W(X’”, y”’) 
\ 

x dx“ dx”’ dy” dy“‘), (4.2) 

where ( ) denotes ensemble averaging. The white-noise field is uncorrelated, i.e. 

(w(x”, y“) w(x”’, y“‘)) = 8(x“-x“‘ , y”- y”’), (4.3) 

where 8(x,  y )  represents the Dirac delta function. Equations (4.2) and (4.3) may now 
be combined. After a change of variables, 

a = x”-x , p =  y”-y,  

the result becomes (using symmetric weighting functions f ( x ,  y ) )  

Wr1,rz)  = f (a ,P) f (a - r l>P-r , )  dP, (4.4) lrm 
where rl = Ix‘-xI, r2 = Iy’-yI 

Equation (4.4) can easily be transformed into the frequency domain by taking a 
Fourier transform (FT) of both sides of the equation and expressing f ( k l ,  k2) ,  the FT 
of f ( x ,  y ) ,  in terms of &k,, k2) ,  the FT of R(r l ,  r2 )  

(4.5) 
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I n  the absence of detailed information from the experiments, we assume that the 
correlation function is Gaussian with lengthscale L, (cf. 32.5.1). Thus, 

@kl, k, )  = FT{ ( n 2 )  exp [ -q]} 
Substituting (4.6) into (4.5) and taking the inverse FT offik,, k,) leads to the desired 
weighting function : 

(4.7) 
f ( r l ,  r 2 )  = (zr L. (n2): exp { -TI. (r: + 4 

L, 
Now, from (4.7) and (4.1) we can obtain the index-of-refraction field, 

The ray-tracing calculations also require knowledge of the gradient of the index- 
of-refraction field in the x- and y-directions. These quantities are obtained by 
differentiating (4.8) : 

x w(x’), y’) dx’ dy‘. (4.10) 

Equations (4.8), (4.9) and (4.10) can be evaluated using fast Fourier transform (FFT) 
algorithms. The equations take the form of convolution integrals so the F T  of 
n ( x ,  y) is proportional to the product of the Fourier-transformed Gaussian weighting 
function and the white-noise field : 

Taking the inverse FT of (4.1 l ) ,  we obtained the desired expression for the index-of- 
refraction field : 

n ( x ,  y) = (27~); L,(n2)tFT-l ] FT[w(x’, y’)]}. (4.12) 

Similarly, the expressions for n,(x, y) and n,(x, y) are 

n,(x,y) = ( 2 ~ ) ;  L,(n2)fFTP1{ -ik,exp [ - 4(k: + k:) ] FT[w(x’,y’)]}, (4.13) 

L,” 

L,” 

n,(x, y) = (2n)f L,(n’)fFT-l{ -ik2 exp [ - 4(k: + k; )  ] FT[w(x’, y’)]} . (4.14) 

4.2. The ruy-tracing procedure 
Numerical methods for the calculation of wave scattering have been reviewed by 
Clarebout (1976) and Candel (1979a, b ) ,  among others. Because in this study we are 
mainly interested in the geometry of the field, we have chosen to compute ray paths 
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and wave fronts using the approach of geometrical optics, rather than a more 
complete diffraction method. The ray paths through the two-dimensional random 
medium are computed from the ray equations, 

d 
- Wr = Wn, 
ds 

dx Wr 

ds n ’ 
_ -  - - 

(4.15) 

(4.16) 

where s denotes the path length measured along the ray, x is the position vector of 
a point on the ray and n is the index of refraction of the random medium. Initially, 
the rays are parallel to the x-axis. Subsequently, the ray position and the slope are 
computed for a small increment in path length As using an iterative procedure. The 
index-of-refraction field is prescribed on a 128 x 128 mesh grid and intermediate 
values are computed by interpolation. 

The wave fronts are surfaces of constant optical path length. Once the ray paths 
are known the path length along a ray can be computed as 

(4.17) 

In  the numerical calculations the wave front is computed at  five equally spaced 
locations in the direction of propagation. 

4.3. Results 

LY ds. 

4.3.1 Computer-generated medium and rays 

A photograph of the computer-generated medium is shown in figure 27. The grey 
levels represent the value of the index of refraction ; white indicates a high index and 
black a low index. The histogram a t  the bottom of the photograph is the histogram 
of grey levels, and thus gives the probability density function of the index-of- 
refraction field. The results depicted in figure 29 are obtained by calculating rays 
through the medium of figure 27 incident on the left, top, right and bottom faces, 
respectively. As a check on the computer-generated medium, its radially symmetric 
correlation function is calculated numerically using Fourier-transform techniques 
(figure 28). 

The ray paths and wave fronts of an initially plane wave which propagates 
through the computer-generated medium are shown in figure 29. The rays do not 
propagate along straight lines, but instead large excursions from the unperturbed 
path occur. It is instructive to consider the medium to be made up of a random array 
of gradient-index lenses which tend to focus and defocus portions of the wave front ; 
the rays are deflected in the direction of the gradient of the index of refraction. Under 
the conditions set up to model the experiments, the first caustics form after only 
three or four correlation lengths. It is interesting to note that in most cases the 
bundle of rays that have been passed through a caustic can be identified as an 
expanding fan for a t  least ten correlation lengths beyond focus. Evidently, the 
distribution of the index-of-refraction field in the initial three to four correlation 
lengths of the medium strongly influences the behaviour of the rays downstream, a t  
least over the propagation distance studied here.? 

t Far inside the medium one experts the effects of the initial region to diminish, so the ray 
directions can be considered to be a Markovian process without after-effects (Kulkarny & White 
1982). 
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FIGURE 27. Grey-scale image of computer-generated medium. 
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FIGURE 28. Radially symmetric correlation function of the computer-generated medium. 
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FIGURE 29. Four representative ray-tracing results. (a )  Corresponds to the unrotated medium as 
shown in figure 27, and (b), (c) and ( d )  are obtained by counterclockwise rotation of the medium 
by 9O0, 180" and 270" respectively. 
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FIGURE 30. The evolution of wave amplitude and peak pressure as a function of propagation 
distance in the medium. (a)  Shows the computed ray paths through the medium and in (b)-(f) 
pressure profiles are shown ; the top trace denotes peak pressure and the bottom trace wave-front 
pressure. Stations (b)-(f) are located at x / L  = 4, 8, 12, 16 and 20, respectively. 
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FIGURE 31. Comparison between the probability density function for the distance to first focus 
obtained from the numerical calculations and the Kulkarny-White analysis (curve). 

The fact that whenever an acoustic wave passes through a focus the wave 
front becomes multiply folded (Friedlander 1958) is clearly demonstrated here. The 
pressure field is therefore made up of a succession of wave fronts. The area of the 
wave front and the wave-front thickness increase with propagation distance. 

4.3.2. Wavefront rise time 
In order to calculate the rise time of the initial disturbance, an imaginary row of 

pressure transducers is placed at  each of the five stations a t  which the wave fronts 
are calculated. The transducer dimensions are chosen to correspond to the size of the 
transducers actually used in the experiments, so 46 transducers are distributed 
across the box of turbulence. A histogram of rise times is calculated using the data 
from all 46 transducers for the four orientations of the box and is compared to the 
experimental results in figure 17 (solid curve). The theoretical result for the most 
probable time is set equal to the experimental result, but otherwise no free 
parameters have been adjusted. The favourable comparison suggests that  purely 
geometrical considerations are sufficient to explain the observed shock rise times. 

The calculated p.d.f. is evidently nearly Gaussian in shape. Since the rays are 
perpendicular to the wave front, the ray directions are Gaussian distributed as well, 
in accord with Chernov’s theory. However, that  theory predicts a standard deviation 
that is twice as large as the one computed in our simulation. The discrepancy may 
be due to  the large excursions the rays experience while travelling through the 
medium. Under such conditions the underlying assumptions of the Chernov theory 
are violated. 

4.3.3. Shock and peak amplitudes 
The amplitude of the initial wave front can be computed using the law of 
conservation of energy along a ray tube. In  two dimensions the amplitude is 
inversely proportional to the square root of the distance between two points on 
adjacent rays. By this means we calculate the amplitude of that portion of the front 
that first strikes each transducer and average over all transducers to arrive a t  the 
shock amplitude. The peak amplitude attained behind the front is estimated by 
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summing the contributions of all wave-front sections that strike the transducer. In  
figure 30 results are shown for the peak and wave-front amplitudes of the wave as it 
travels through the medium. At the first measuring station the peak amplitude 
occurs almost always at the shock. Thus the wave consists of a single front. 
Eventually the front distorts and becomes folded owing to focusing and the shock 
amplitude decreases owing to energy losses by scattering. 

The maximum value of the peak pressure is limited by the transducer response ; 
high pressures which occur over a small area are averaged over the transducer surface 
and this tends to reduce the observed peak values. Thus no very large amplitudes are 
observed, even in regions in which rays cross. The results obtained here cannot be 
directly compared with the experimental data, because of the neglect of diffraction 
effects. However, the simulation shows that locally high values of pressure can be 
observed, as well as some very low pressures a t  other locations. This observation is 
in agreement with measured flight test data and our shock-tube experiments. 

4.4. Distance to first focus 

The distance to first focus can be analysed by computing the distance to the first ray 
crossing between two adjacent rays. Following Kulkarny & White (1982) a non- 
dimensional distance to first focus is defined : 

where 

s " =  a&, (4.18) 

(4.19) 

and R represents the correlation function of the medium. In our calculations the 
assumed functional form of R is given by 

R(x, y) = p2 exp (4.20) 

where ,u denotes the standard deviation of the index-of-refraction field, so 

(4.21) 

According to Kulkarny & White the p.d.f. of the distance to  first focus measured 
along a ray peaks very sharply around s" = 1.3, and then drops exponentially for large 
distances. Figure 31, constructed from our computed random medium, is in good 
agreement, the maximum occurring at s" x 1.4. The value of the most probable focal 
length depends only on the r.m.s. value of the index-of-refraction fluctuations and 
the form of the correlation function of the medium. No adjustable parameters are 
available. The dimensional form of this focal length, which we denote by Fp, can be 
directly computed from the Kulkarny-White analysis. The result for a medium 
characterized by a Gaussian correlation function is 

1 1  2 s  s" = 1237p,u%---. 
L, 

L, 
Fp = 1.4 &2i7ct 

L 

PZ 
= 0.51 4. (4.22) 

Another quantity of interest, discussed in $3.2.2, is the mean radius of curvature 
of the shock fronts a t  a given image plane. Unfortunately, this quantity was not 
calculated by Kulkarny & White. It should be noted that the calculations carried out 
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here apply to the two-dimensional case. Recently Zwillinger & White (1985) have 
extended the analysis to include three-dimensional effects. They found that even in 
that case rays tend to  focus inside the medium a t  a preferred distance. 

5. Conclusions 
A unique laboratory apparatus has been constructed for the investigation of the 

interaction of weak shock waves with a statistically homogeneous random medium. 
The performance of the apparatus, which generates a mixture of helium and R12 
with 6 % r.m.s. sound-speed fluctuations, has been documented with point density 
measurements and baseline shock-wave tests, in which shock pressure histories with 
the medium fully-mixed and uniform were used to verify that the apparatus was 
properly balanced. 

The flow before, during and after passage of the shock wave through the test 
section is visualized with schlieren and shadowgraph photography. A method for 
determining the power spectrum of the spatial scales of inhomogeneities in the 
random medium from a shadowgraph image has been applied to the field before 
passage of the shock. The effect of shock propagation on the properties of the random 
medium is most pronounced for strong waves, which, in turn, are little affected by 
the inhomogeneities. There is evidence of strong compression and enhanced mixing 
in the shock-processed fluid. Bright linear features on the schlieren photographs 
appear in the shocked fluid. They are preferentially oriented parallel to  the shock 
front. Their separation indicates that the shocked fluid is substantially compressed. 
Similar trends are observed in the shadowgraph photos. 

The images of distorted shock fronts on the photographs and the pressure traces 
are interpreted to represent a multiplicity of scattered wave fronts rather than a 
single highly wrinkled front. Quantitative measures of the scattering and distortion 
of the shock wave by the medium are obtained from the pressure measurements. 
Rounded and peaked pressure histories are observed, and the weaker waves show 
significant precursors. Statistics of shock pressures, peak pressures, arrival times, 
wave-front rise times, and the time interval to peak pressure are obtained from the 
pressure traces. The results are similar to those observed in flight tests (Maglieri 
& Parrot 1963). Maximum overpressures about 1.9 times ambient are observed. 
Qualitatively, the occurrence of rounded and peaked pressure traces can be explained 
in terms of focusing and defocusing of the waves by the action of the random 
medium. Rise times two orders of magnitude larger than the Taylor thickness of 
unperturbed shock waves are observed. Rise-time measurements made in the region 
immediately downstream of the scattering medium suggest that  the wave fronts 
emerging from the test region are randomly curved with radius of curvature of order 
10 cm and lateral scale about 6 em, consistent with the photographic evidence. 
Comparison of the steepening time of a finite-amplitude wave with observations of 
the time interval to peak pressure after 22 cm of uniform propagation suggest that  
steepening arguments do not apply in regions where strong random focusing occurs, 
presumably because propagation paths are highly distorted and mixed. 

Two-dimensional numerical ray-tracing calculations have been used to interpret 
the experimental observations. Diffraction effects, which are particularly important 
near a focus, have not been treated, but it is not expected that their inclusion would 
significantly alter our interpretations. It is found that rays tend to focus a t  a 
preferred distance from the entrance plane of the scattering medium. This distance, 
the most probable focal length Fp, is determined by the magnitude of the variations 
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in the index of refraction of the inhomogeneities and by the derivatives of the 
correlation function. The calculations show that the trajectories are deterministic in 
appearance at  least for the first few focal lengths. A simple scaling to conditions 
appropriate for sonic-boom propagation in the turbulent atmospheric boundary 
layer suggests that the propagation length through the layer is three or four most 
probable focal lengths, so the ray trajectories for the sonic boom should be similar to 
those computed in this study. 
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